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Synopsis

The paper contains a survey of the investigations of the last decade on the 
energy-momentum complex in general relativity. A comparison of the properties 
of the various complexes proposed in different papers is performed and their ad
vantages and deficiencies are discussed. A satisfactory solution of the energy 
problem in accordance with the general principle of relativity has now been reached.
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Shortly after Einstein had developed his final theory of gravitation in 1915 
he also attacked the problem of energy and momentum conservation 

for the complete system of matter plus gravitational field. In his famous 
papers from the years 1915 and 1916 [1] he introduced the well-known ex
pression for the energy momentum complex

= V + (i)

which satisfies the divergence relation

E (2)

as a consequence of the field equations. Here, 3^ is the matter tensor density, 
which appears as source of the gravitational field on the right-hand side of 
Einstein’s field equations, while the gravitational part Ex^ is a homogeneous 
quadratic expression in the first-order derivatives gikl of the metric tensor 
gik. In terms of the Einstein Lagrangian

(3)

has the canonical form 

(4)

where x is Einstein’s gravitational constant. is obtained from the scalar 
curvature density Hi by omitting a divergence part containing the second 
order derivatives gik m. It is an affine scalar density which is homogenously 
quadratic in the gikl and the expressions (l)-(4) can be obtained by the 
well-known method of (linear) infinitesimal coordinate transformations 
applied to .

1 This paper was reported at the Einstein Symposium der Deutschen Akademie der Wissen
schaften, Berlin, in November 1965.
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For a closed system and for a restricted class of coordinate systems the 
quantities obtained from E^k by integrating over the spatial coordinates, i. e.

Epi = IJ J j\Ti4 dx1 dx2 dx3 (5)

have quite remarkable properties. Before stating these properties we have 
to specify what we mean by a closed system. In general, an insular system,
i. e. a system for which is zero outside a time-like tube of finite spatial 
extension, is not closed since it may lose energy by emission of gravitational 
radiation. This question has been studied extensively by Bondi et al [2] 
and by Sachs [3], and we can now give a general definition of a non-radiative 
system. A system is said to be closed if it is insular and, further, if it is 
possible to introduce a class of coordinates

xl = {x, y, z, ct}, r = |/x2 + y2 + z2 (6)

with the following properties. Points at large spatial distances from the matter 
tube have large values of r, i. e. spatial infinity corresponds to r->oo. The 
metric is of the form (1

9ik ~~ dik 9ik (7)
where is the constant Minkowski matrix and (gik and its first-order 

derivatives are asymptotically of the type

9ik = ^1’ 9ik,l = 9ik,l = ^2 ■ ($)

Here, 0n with positive integer n denotes a term for which r” 0n remains 
finite for r-+<x>. The coordinates defined by (6)-(8), the “B.S.-coordinates” 
for a closed system, are asymptotically Lorentzian since gik^dik f°r r_>c0- 

Now, by integrating (2) over a suitable cylindrical region of space-time 
and using Gauss’s theorem one finds in a well-known way that the quantities 
EPt have the following properties A, which are essential for the interpretation 
of Pt as the components of the four-momentum:

A For a closed system and in a system of B.S.-coordinates the quantities Pt 
are constant in time and they transform as the components of a ^-vector 
under all linear transformations.

These properties are contained in the more general statement, also following 
from (2), that the integrals

EPi =----f E~^ik dSk
(9)
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integrated over any space-like 3-dimensional hypersurface 27 of infinite 
extension are independent of the choice of 27. For the validity of A it is 
essential that is an affine tensor density of weight one and that the 
gravitational part Exf is a homogeneous quadratic function of the gilc lt 
for this means that Erf: = 04 in a system of coordinates (6)-(8).

If we eliminate in (1) by means of the field equations the complex 
ETf appears as a function of the gravitational field variables for which the 
relation (2) must hold identically. This means that may be written in
the form

(10)

(H)

with
(12)0“'” -(-<?) O“ 9'“-//”)•

where = -y™, the so-called super potential, is antisymmetrical in k 
and I. This possibility was first noted by von Freud [4], the explicit expres
sion for is [5]

... kl _ ^nklm 
Eri „ , /------  o , m

The latter quantity 
symmetry relations

is a true tensor density of weight two, satisfying the

 ^mkli  gkiml (13)

while Ey™, which is a homogeneous linear function of the gik>i, is an affine 
tensor density of weight one.

By means of Stoke’s theorem one gets from (9) and (10) for the four- 
momentum j p

E^i = ~ 2c J EWi^dSki (14)
0

where the integration is extended over the 2-dimensional boundary surface 
ø of 27 corresponding to a large constant value /q of the “radius” r (strictly 
speaking one has to take the limit Thus, EPt depends only on the
asymptotic values of the metric and it is, therefore, invariant under all 
coordinate transformations which preserve the asymptotic form of gik.

By means of (1) the equations (10) may be written

(15)

which obviously is a special form of Einstein’s field equations. If we raise 
the index i by means of the metric tensor glk these equations can also be 
brought into the form
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z-btu =Sa (16)

WherC BV™ = —4r~ tf™™' ™ = -BV* 1* (17)

and Bxik again is a homogeneous quadratic function of the gik,i‘ In this 
way we arrive at the complex first given by Bergmann and Thomson [6].

ST“S V + (18)

The integrated quantities BPl obtained from this complex in a similar way 
as EPi in (5) or (9) also have the properties A. Moreover, in any system of 
B.S.-coordinates we have simply

E^i = VikB^k (19)

i. e. the two different complexes give the same values for the total momentum 
and energy in such coordinates.

Similar properties has the following complex given by Landau and 
Lifshitz [6] :

Tik — inikl 
l' ~ lV ,i (20)

...ikl 1 Akim
lW - o 9 , m •2 x (21)

From (16)—(21 ) it follows that

tT*  = |/-s(ï“ + Lr“) (22)

where like Bxik is an affine tensor density of weight one, which is a
homogeneous quadratic function of the Consequently LTU" is an affine
tensor density of weight two, which means that LPl is a 4-vector under 
Lorentz transformations only. On the other hand LTa has the advantage 
of being symmetrical in i and k as is seen at once from (20), (21) and (13). 
In any system of B.S.-coordinates we have

- Bp< - ,fkEpt (23)

so that the three different complexes are equally suited for the calculation 
of the four-momentum in such coordinates. However, in more general systems 
of coordinates the application of these complexes leads to meaningless results. 
From the point of view of general relativity this is not satisfactory and in 
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the past this has caused some doubts about the applicability of these com
plexes at all. As a matter of fact we must require of a truly generally relati
vistic expression for the four-momentum that it satisfies the following con
dition :

B For a closed physical system the total four-momentum is a free ^-vector 
under arbitrary space-time transformations.

The necessity for this requirement is seen at once if we go to the limit of 
spatially very small systems, for in this case our system is effectively a 
particle which, according to basic assumptions of general relativity, certainly 
should have a four-momentum with this property.

A somewhat weaker requirement contained in B is the condition that

B' the fourth component of the four-momentum must be invariant under 
purely spatial transformations

xl = fl(x*),  x'4 = x4 (24)

?4 = P4 (25)

which expresses the physically evident fact that the total energy is invariant 
under such transformations.

Now, none of the forementioned complexes satisfy even this rather weak 
and triviel condition. In the case of the Einstein complex this was pointed 
out first by Bauer [7] who remarked that in a completely empty space 
Einstein’s expression for the total energy gives the correct value zero in a 
Cartesian system of coordinates, but the meaningless value - °o when cal
culated in polar coordinates. For this reason the whole question of the energy 
in gravitational fields was taken up again in 1958 [5], and it was shown 
that it is possible to define a complex

e<‘ - - Z(“.,

X

which satisfies the condition B'. In fact it follows from (26) that 044 is a 
scalar density under purely spatial transformations which means that the 
Bauer difficulty does not arise with this complex. Further, it seemed that 
this complex made it possible to give an unambiguous meaning to the di
stribution of the energy throughout space-time. Similarly as the Einstein

(26)
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expression is obtained from the Lagrangian EQ, the complex (26) follows 
by the method of infinitesimal coordinate transformations applied to the 
complete scalar curvature density 3Î [8]. However, a closer consideration 
showed that the complex (26) does not satisfy the condition A. This is 
connected with the fact that besides the gikl also contains the second-
order derivatives gikti,m. Furthermore, it is not sufficient to consider the 
energy only, i. e. besides the condition B' we have to require the full condition 
B to be satisfied and this is not the case either for the complex (26). In 
fact the applicability of the latter complex is even more restricted than the 
three former complexes.

In a recent paper, which will appear in the Report of the Conference on 
Elementary Particles held in Kyoto in September 1965, the question was dis
cussed what properties of the energy-momentum complex T*  are necessary 
and sufficient in order that the integrated quantities Pt have all the properties 
A and B. The result was the following:

1. T/=S/ + r/ (27)

is an affine tensor density of weight one satisfying the relation

= <28)

in every system of space-time coordinates.

2. xff is a function of the gravitational field variables which, in a B.S.-system 
of coordinates (6)-(8) for a closed system, satisfies the relation

r3 rf -> 0 for r -> co . (29)

3. The superpotential = - U/*,  which expresses Tf in the form

V - U,“.; (30)

is a true tensor density depending on the gravitational field variables and 
their first-order derivatives only.

The conditions 1 and 2 ensure that the integrated quantities

"ijjjt‘4(,xidx2dx3 u“ds,<‘ (si} 

have the properties A. Further, with the assumption 3. the quantity dAt = 
= XXf2 dSkl is a true 4-vector on 0. Therefore, since space-time for a closed 
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system can be treated as flat on and outside <P the vectors dAt can in a unique 
way be parallel-displaced to a common point P on or outside 0 so as to form 
a true 4-vector at the point P. Thus Pt is a true free 4-vector. It should be noted 
that, for a system with sufficiently small spatial extension say an atomic 
system, “spatial infinity” is practically reached already at very small distan
ces, so that the “radius” rx of 0 in such cases may even be taken micro
scopically small.

None of the complexes mentioned so far satisfy the condition 3. In fact 
it is evident that no complex containing the metric tensor only can satisfy 
this condition, for it is impossible to construct a true tensor density 
out of gik and its first-order derivatives. This shows that one has to introduce 
a new element into the space-time manifold of general relativity and this 
can be done in different ways.

Following ideas of Rosen [9], Cornish [10] introduces a flat space metric 

which asymptotically for large spatial distances agrees with gik. The 
mapping of the real space-time with metric gik on the imaginary Hat space
time with the metric (gik may for instance be performed by assuming that 
(o) (°)gik in a definite B.S.-system of coordinates (6)—(8) has components gik = rjik 
throughout space-time. In any other system of coordinates obtained by a 

(o)
non-linear transformation the components of gik are then not constant 

. . (°) although, of course, the curvature tensor corresponding to the metric gik 
vanishes in all systems. Now, if the covariant derivative of a tensor Aik 
corresponding to the metric g^ is denoted by Aik/l one may, starting from 

Eykl in (11), define a superpotential 

(32)
Qin n'k'l'm.

which obviously is a tensor density under arbitrary space-time transforma
tions. Then, the complex

eV = cVj (33)

satisfies all the conditions 1-3 and the corresponding integrated quantities 
cPt will have all the properties A and B. In a similar way one could start 
from the superpotentials Bipikl and Ly>tkl and construct true tensor densities 

(o)
by means of the flat space metric gik. In this way one would arrive at two 
other expressions for the total four-mementum which are numerically 
identical with the one following from (32), (33).
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However, this method of obtaining true tensor densities by introducing 
an unobservable metric does not seem to me quite satisfactory. Apart from 
the arbitrariness in the mapping of the real space-time on the imaginary 
flat space-time which perhaps is not so serious since it does not effect the 
values of the total four-momentum, the introduction of a metric ^gik which 

to a large extent is independent of the observable metric gik makes the co
variance obtained rather formal and deprives the general principle of rela
tivity of its physical content. If one introduces unobservable quantities, they 
should rather be of a similar type as the potentials in electrodynamics from 
which the observable quantities, in our case the gik, can be calculated 
uniquely. As was shown in a series of recent papers [11—13] it is, in fact, 
possible to obtain a satisfactory expression for the energy-momentum complex, 
satisfying all requirements, if one describes the gravitational field by means 
of tetrads 7qa * which uniquely determine the metric tensor by the equations

&*  = Af(a)7i(a)Jt . (34)

Here, the index (n), which is raised and lowered by means of the constant 
Minkowski matrix -g(ab} = g(ab) numbers the four tetrad vectors 7^a)(.r) at 
the arbitrary point (.r). The use of tetrads to describe the gravitational 
field is by no means new. In fact, tetrads enter as an essential element 
in the generally relativistic formulation of the Dirac equations for Fermion 
fields.

If one eliminates gik in the expression for the scalar curvature density 
by means of (34), 9Î appears as the sum of a divergence part and a new 

Lagrangian £ which is a homogeneous quadratic expression in the first- 
order derivatives 71/^ of ^ie tetrad variables. The explicit expression is [11]

£ = (35)

where yikl and are the following true tensor and vector, respectively,

= ^(a)k;l> = (36)

Here, the semicolon means covariant derivation corresponding to the real 
observable metric gik. Thus, in contrast to the Einstein Lagrangian £ in 
(3) the Lagrangian £ is a true scalar density. If we apply the method 
of arbitrary infinitesimal coordinate transformations to this Lagrangian 
£ we get an energy-momentum complex (27) satisfying the condition 7. 
Further
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1
2 x

’ d£
(37')

is a homogeneous quadratic function of the hfy. which is essential for the 
validity of 2. The corresponding superpotential is

= = .^Ø^^Ø*]  (3?)
x

which shows that also the condition 3. is satisfied. Thus, the complex follow
ing from (37) by (30) satisfies all the conditions 1-3 and our problem seems 
to be solved.

However, the tetrad field h^a) is not determined uniquely by (34) for 
a given metric field gik. In fact, any Lorentz rotation of the tetrads,

= &a\b}(x)hp (38)

leaves the right-hand side of (34) unchanged. Here, the rotation coefficients 
f2(a)(b)(a?) may be any scalar functions of (.r) which satisfy the orthogonality 
relations at each point, and the complex obtained from the superpotential 
(37) is not invariant under the “gauge” transformations (38), except if the 
rotation coefficients are constants throughout space-time. For an arbitrary 
physical system there are no physically convincing arguments for fixing the 
gauge so as to make Tifc(.r) a unique function of the space-time coordinates, 
but in the case of a completely empty flat space there is no doubt about the 
choice of the tetrads. In order to avoid the forementioned Bauer difficulty 
it is necessary in that case to require that the tetrad field forms a system of 
mutually parallel tetrads throughout space-time, i. e. we must have every
where

A&-0. (39)

Further, for an insular system, where space-time is asymptotically flat we 
must require that the tetrad fields at least asymptotically form a system of 
parallel vectors. This suggests that the tetrads in a system of B.S.-coordinates 
must satisfy the same boundary conditions as the metric at large spatial 
distances. For a closed system this would mean relations analogous to (7), 
(8), i. e. (1)

^(a)i — rlai^~^ai

(1) (1) 
hai ~ ^1 ’ hai,k ~ ^2

(40)
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Then, as was shown in reference [12] for an even more general system 
emitting gravitational radiation, the total four-momentum Pt is invariant 
under all gauge transformations (38) which respect the boundary conditions. 
Besides, of course, Pi is invariant under all Lorentz rotations of the tetrads 
with constant rotation coefficients &a\b). On the other hand, the complex 
T^ itself is invariant only under the latter type of gauge transformations. 
Therefore, unless one can find a good physical argument for fixing the gauge 
throughout the system, it has no physical meaning to speak about the energy 
distribution inside the system. This would be in complete agreement with 
Einstein’s own point of view. Actually nobody has so far been able to give 
a prescription for measuring the energy of the gravitational field in a small 
region, in contrast to the total energy for which such prescriptions are easily 
given [13].

In any system of B.S.-coordinates, the values of Pt obtained from the 
tetrad complex (37) are the same as those obtained from the metric com
plexes (11), (17), (21) of Einstein, Bergmann and Landau. Therefore, once 
the generally covariant expression of Pi has been established by way of the 
tetrad formalism, we may forget about the tetrads and perform the calcula
tion of Pi in a system of coordinates in which the purely metric-dependent 
complexes are known to be valid. Then, the values of Pi in an arbitrary 
system of coordinates can be obtained by using the law of transformation 
of a 4-vector.

Anyhow, the tetrad formulation has given us more confidence in the 
application of the energy-momentum complexes which for many years by 
many physicists have been regarded as not quite respectable quantities. 
We are also encouraged to apply them to more general physical systems. 
Up till now we have only considered the case where space time far away 
from our system is flat. What about a system in a permanent external 
gravitational field, for instance a planet in the field of a heavy central body 
like the sun? If the external gravitational field is practically constant over 
a region of extension / large compared with the dimensions of the planet 
the preceding considerations are easily generalized. We have only to choose 
the tetrads of the external field so that the equation (39) is satisfied at each 
point of the time-track of the planet. This can always be obtained by a 
suitable transformation (38). In a system of Fermi-coordinates where the 
external metric has vanishing first-order derivatives at all points of the time
track of the planet we then get by integrating T/ over a sphere enclosing 
the planet but with a radius smaller than I a four-momentum Ppl for the 
planet which is a 4-vector in the space-lime with the external metric.
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The energy-momentum complexes can also be used for calculating the 
total energy and momentum for systems which emit gravitational radiation 
in which case these quantities are not constant of course. Also the amount 
of energy and momentum emitted in different directions can be calculated. 
Such calculations were performed in reference [12]. As regards the total 
energy and its variation in time the results obtained are in agreement with 
and corroborate earlier results of Bondi [2] and Sachs [3].

The Niels Bohr Institute and
NORDITA Copenhagen
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